Using Belief Functions for Uncertainty Management and Knowledge Acquisition: An Expert Application
نویسندگان
چکیده
This paper describes recent work on an ongoing project in medical diagnosis at the University of Guelph. A domain on which experts are not very good at pinpointing a single disease outcome is explored. On-line medical data is available over a relatively short period of time. Belief Functions (Dempster-Shafer theory) are first extracted from data and then modified with expert opinions. Several methods for doing this are compared and results show that one formulation statistically outperforms the others, including a method suggested by Shafer. Expert opinions and statistically derived information about dependencies among symptoms are also compared. The benefits of using uncertainty management techniques as methods for knowledge acquisition from data are discussed.
منابع مشابه
Converting a rule-based expert system into a belief network.
The theory of belief networks offers a relatively new approach for dealing with uncertain information in knowledge-based (expert) systems. In contrast with the heuristic techniques for reasoning with uncertainty employed in many rule-based expert systems, the theory of belief networks is mathematically sound, based on techniques from probability theory. It therefore seems attractive to convert ...
متن کاملFactors affecting the acquisition of expert tacit knowledge Case study: Delivery time in twin pregnancy
This paper discovers the necessary variables need for creating models for tacit knowledge acquisition, especially in medical care services. The case studied here, was knowledge of diagnosing and time of delivery in twin pregnancy with nuchal translucency screening. This paper covers the empirical work undertaken on semi-structured interview based on thematic analysis. With regard of theoretical...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملA Surface Water Evaporation Estimation Model Using Bayesian Belief Networks with an Application to the Persian Gulf
Evaporation phenomena is a effective climate component on water resources management and has special importance in agriculture. In this paper, Bayesian belief networks (BBNs) as a non-linear modeling technique provide an evaporation estimation method under uncertainty. As a case study, we estimated the surface water evaporation of the Persian Gulf and worked with a dataset of observations ...
متن کاملOnline Fault Detection and Isolation Method Based on Belief Rule Base for Industrial Gas Turbines
Real time and accurate fault detection has attracted an increasing attention with a growing demand for higher operational efficiency and safety of industrial gas turbines as complex engineering systems. Current methods based on condition monitoring data have drawbacks in using both expert knowledge and quantitative information for detecting faults. On account of this reason, this paper proposes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1304.1127 شماره
صفحات -
تاریخ انتشار 2013